Order indices of density matrices for finite systems
نویسندگان
چکیده
منابع مشابه
Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملFinite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems
Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...
متن کاملParametrizing Density Matrices for Composite Quantum Systems
A parametrization of density operators for bipartite quantum systems is proposed. It is based on the particular parametrization of the unitary group found recently by Jarlskog. It is expected that this parametrization will find interesting applications in the study of quantum properties of many partite systems.
متن کاملfinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$. an $ntimes n$ complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$). in this paper, we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexiv...
متن کاملSeparability of Density Matrices of Graphs for Multipartite Systems
We investigate separability of Laplacian matrices of graphs when seen as density matrices. This is a family of quantum states with many combinatorial properties. We firstly show that the well-known matrix realignment criterion can be used to test separability of this type of quantum states. The criterion can be interpreted as novel graph-theoretic idea. Then, we prove that the density matrix of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational and Theoretical Chemistry
سال: 2013
ISSN: 2210-271X
DOI: 10.1016/j.comptc.2012.08.002